Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.595
Filtrar
1.
Biosens Bioelectron ; 255: 116263, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593715

RESUMO

Aggregation-induced electrochemiluminescence (AIECL) technology has aroused widespread interest due to the significant improve in ECL response by solving the problems of aggregation-caused quenching and poor water solubility of the luminophore. However, the existing AIECL emitters still suffer from low ECL efficiency, additional coreactants and complex synthesis steps, which greatly limit their applications. Herein, luminol, as a kind of AIE molecule, was assembled with Zn2+ nodes to obtain a novel microflower-like Zinc-luminol metal-organic gel (Zn-MOG) by one-step method. In the light of the strong affinity of N atoms in luminol ligand to Zn2+, Zn-MOG with vigorous viscosity and stability can be formed immediately after vortex oscillation, overcoming the main difficulties of the complicated synthesis steps and poor film-forming performance encountered in current AIECL materials. Impressively, an AIECL resonance energy transfer (RET) biosensor was constructed using Zn-MOG as a donor and Alexa Fluor 430 as an acceptor in combination with DNA-Fuel-driven target recycling amplification for the ultrasensitive detection of PiRNA-823. The fabricated biosensor exhibited a wide linear relationship in the range of 100 aM to 100 pM and a detection limit as low as 60.0 aM. This work is the first to realize the construction of ECL emitters using the AIE effect of luminol, which provides inspiration for the design of AIECL systems without adding coreactants.


Assuntos
Técnicas Biossensoriais , Luminol , Zinco , RNA de Interação com Piwi , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Metais
2.
Luminescence ; 39(4): e4745, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644416

RESUMO

This study introduces a novel chemiluminescence (CL) approach utilizing FeS2 nanosheets (NSs) catalyzed luminol-O2 CL reaction for the measurement of three pharmaceuticals, namely venlafaxine hydrochloride (VFX), imipramine hydrochloride (IPM), and cefazolin sodium (CEF). The CL method involved the phenomenon of quenching induced by the pharmaceuticals in the CL reaction. To achieve the most quenching efficacy of the pharmaceuticals in the CL reaction, the concentrations of reactants comprising luminol, NaOH, and FeS2 NSs were optimized accordingly. The calibration curves demonstrated exceptional linearity within the concentration range spanning from 4.00 × 10-7 to 1.00 × 10-3 mol L-1, 1.00 × 10-7 to 1.00 × 10-4 mol L-1, and 4.00 × 10-6 to 2.00 × 10-4 mol L-1 with detection limits (3σ) of 3.54 × 10-7, 1.08 × 10-8, and 2.63 × 10-6 mol L-1 for VFX, IPM, and CEF, respectively. This study synthesized FeS2 NSs using a facile hydrothermal approach, and then the synthesized FeS2 NSs were subjected to a comprehensive characterization using a range of spectroscopic methods. The proposed CL method was effective in measuring the aforementioned pharmaceuticals in pharmaceutical formulations as well as different water samples. The mechanism of the CL system has been elucidated.


Assuntos
Cefazolina , Compostos Ferrosos , Imipramina , Medições Luminescentes , Luminol , Cloridrato de Venlafaxina , Cefazolina/análise , Cefazolina/química , Cloridrato de Venlafaxina/análise , Cloridrato de Venlafaxina/química , Imipramina/análise , Imipramina/química , Medições Luminescentes/métodos , Luminol/química , Nanoestruturas/química , Luminescência
3.
Anal Chim Acta ; 1303: 342520, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609255

RESUMO

BACKGROUND: Cluster of Differentiation 44 (CD44) is considered an important biomarker for various cancers, and achieving highly sensitive detection of CD44 is crucial, which plays a significant role in tumor invasion and metastasis, providing essential information for clinical tumor diagnosis. Commonly used methods for analysis include fluorescence spectroscopy (FL), photoelectrochemical analysis (PEC), electrochemical analysis (EC), and commercial ELISA kits. Although these methods offer high sensitivity, they can be relatively complex to perform experimentally. Electrochemiluminescence (ECL) has gained widespread research attention due to its high sensitivity, ease of operation, effective spatiotemporal control, and close to zero background signal. RESULTS: In this work, a sandwich-type ECL immunosensor for detecting CD44 was constructed using luminol as a luminophore. In this sensing platform, bimetallic MOFs (Pd@FeNi-MIL-88B) loaded with palladium nanoparticles (Pd NPs) were used as a novel enzyme mimic, exhibiting excellent catalytic performance towards the electroreduction of H2O2. The hybrids provided a strong support platform for luminol and antibodies, significantly enhancing the initial ECL signal of luminol. Subsequently, core-shell Au@MnO2 nanocomposites were synthesised by gold nanoparticles (Au NPs) encapsulated in manganese dioxide (MnO2) thin layers, as labels. In the luminol/H2O2 system, Au@MnO2 exhibited strong light absorption in the broad UV-vis spectrum, similar to the black body effect, and the scavenging effect of Mn2+ on O2•-, which achieved the dual-quenching of ECL signal. Under the optimal experimental conditions, the immunosensor demonstrated a detection range of 0.1 pg mL-1 - 100 ng mL-1, with a detection limit of 0.069 pg mL-1. SIGNIFICANCE: Based on Pd@FeNi-MIL-88B nanoenzymes and Au@MnO2 nanocomposites, a dual-quenching sandwich-type ECL immunosensor for the detection of CD44 was constructed. The proposed immunosensor exhibited excellent reproducibility, stability, selectivity, and sensitivity, and provided a valuable analytical strategy and technical platform for the accurate detection of disease biomarkers, and opened up potential application prospects for early clinical treatment.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias , Humanos , Compostos de Manganês , Ouro , Peróxido de Hidrogênio , Luminol , Reprodutibilidade dos Testes , Imunoensaio , Óxidos , Paládio , Receptores de Hialuronatos
4.
Mikrochim Acta ; 191(5): 269, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630309

RESUMO

A molecularly-imprinted electrochemiluminescence sensor was constructed for the determination of fenpropathrin (FPT) by molecular imprinting technology. In this sensing platform, the introduction of CdS@MWCNTs significantly enhanced the initial ECL signal of the luminol-O2 system. Specifically, MWCNTs was used as a carrier to adsorb more CdS, in which CdS acted as a co-reaction promoter for luminescence. Molecularly imprinted polymer (MIP) containing specific recognition sites of FPT was used as the material for selective recognition. With increasing amount of FPT the ECL signal decreased. Under the optimum conditions, the ECL response was linearly related to the logarithm of FPT concentration. The developed ECL sensor allowed for sensitive determination of FPT and exhibited a wide linear range from 1.0 × 10- 10 mol L- 1 to 1.0 × 10- 6 mol L- 1. The limit of detection was 3.3 × 10- 11 mol L- 1 (S/N = 3). It can be used for the detection of FPT in vegetable samples.


Assuntos
Luminescência , Impressão Molecular , Piretrinas , Luminol , Polímeros Molecularmente Impressos
5.
Biomolecules ; 14(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540791

RESUMO

In order to evaluate the role of substituents at 3-C and 17-C in the cytotoxic and cytoprotective actions of DHEA and 5-AED molecules, their derivatives were synthesized by esterification using the corresponding acid anhydrides or acid chlorides. As a result, seven compounds were obtained: four DHEA derivatives (DHEA 3-propionate, DHEA 3-butanoate, DHEA 3-acetate, DHEA 3-methylsulfonate) and three 5-AED derivatives (5-AED 3-butanoate, 5-AED 3,17-dipropionate, 5-AED 3,17-dibutanoate). All of these compounds showed micromolar cytotoxic activity toward HeLa and K562 human cancer cells. The maximum cytostatic effect during long-term incubation for five days with HeLa and K562 cells was demonstrated by the propionic esters of the steroids: DHEA 3-propionate and 5-AED 3,17-dipropionate. These compounds stimulated the growth of normal Wi-38 cells by 30-50%, which indicates their cytoprotective properties toward noncancerous cells. The synthesized steroid derivatives exhibited antioxidant activity by reducing the production of reactive oxygen species (ROS) by peripheral blood mononuclear cells from healthy volunteers, as demonstrated in a luminol-stimulated chemiluminescence assay. The highest antioxidant effects were shown for the propionate ester of the steroid DHEA. DHEA 3-propionate inhibited luminol-stimulated chemiluminescence by 73% compared to the control, DHEA, which inhibited it only by 15%. These data show the promise of propionic substituents at 3-C and 17-C in steroid molecules for the creation of immunostimulatory and cytoprotective substances with antioxidant properties.


Assuntos
Androstenodiol , Desidroepiandrosterona , Humanos , Desidroepiandrosterona/farmacologia , Luminol , Leucócitos Mononucleares , Voluntários Saudáveis , Células K562 , Luminescência , Propionatos , Esteroides
6.
Talanta ; 273: 125867, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447340

RESUMO

The traditional luminol electrochemiluminescence (ECL) sensing suffers from low signal response and instability issues. Here, an Au/ZnCuS double-enhanced g-C3N4-supported luminol ECL aptasensor is constructed for the sensitive detection of human mucin 1 (MUC1). In this platform, g-C3N4 of a large specific surface area is beneficial to load more luminol illuminants. Au nanoparticles promote the decomposition of H2O2 coreactants to generate more reactive oxygen (•OH and O2•-) intermediates, while ZnCuS can immobilize the aptamer and simultaneously catalyze H2O2 decomposition, realizing the double-wing signal amplification. Under optimal conditions, this sensor shows a good detection capability within 1.0 × 10-4-1.0 × 103 ng mL-1 and a low detection limit of 5.0 × 10-5 ng mL-1, as well as ideal stability, selectivity, and reproducibility. This double-enhanced aptasensor highlights a new signal-enhancement approach for early biomarker detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanocompostos , Humanos , Luminol , Ouro , Peróxido de Hidrogênio , Mucina-1 , Reprodutibilidade dos Testes , Técnicas Eletroquímicas , Medições Luminescentes , Limite de Detecção
7.
Sci Justice ; 64(2): 151-158, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431372

RESUMO

Good laboratory practice minimizes the biological hazard posed by potentially infectious casework samples. In certain scenarios, when the casework sample is contaminated with highly contagious pathogens, additional safety procedures such as disinfection might be advised. It was previously proven that ozone gas treatment does not hamper STR analysis, but there is no data on how the disinfection affects other steps of the forensic analysis. In this study, we aimed to assess the interference of ozone disinfection with forensic tests used to identify biological stains. A dilution series of blood, saliva, and semen samples were pipetted onto cotton fabric and let completely dry. Half of the samples were subjected to ozone treatment, while the rest served as controls. All the samples were tested with specific lateral flow immunochromatographic assays and for specific RNA markers with quantitative real-time PCR. Additionally, luminol test was carried out on blood spots, Phadebas® Amylase Test on saliva stains, and semen stains were examined with STK Lab kit and light microscope following Christmas Tree or Hematoxylin-Eosin staining. Ozone treatment had no detrimental effect on the microscopic identification of sperm cells. Undiluted blood samples were detected with luminol and immunoassay, but at higher dilution, the sensitivity of the test decreased after disinfection. The same decrease in sensitivity was observed in the detection of semen stains using STK Lab kit from STK® Sperm Tracker, and in the case of the immunoassay specific for prostate-specific antigen (PSA). Ozone treatment almost completely inhibited the enzymatic activity of amylase. The sensitivity of antibody-based detection of amylase was also greatly reduced. RNA markers showed degradation but remained detectable in blood and semen samples after incubation in the presence of ozone. In saliva, the higher Ct values of the mRNA markers were close to the detection limit, even before ozone treatment.


Assuntos
Manchas de Sangue , Saliva , Humanos , Masculino , Saliva/química , Sêmen , Corantes/análise , Luminol/análise , Desinfecção , Amilases/análise , RNA Mensageiro/análise , Coloração e Rotulagem , Medicina Legal/métodos
8.
Analyst ; 149(5): 1496-1501, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38315553

RESUMO

Cathodic electrochemiluminescence (ECL) of a luminol (or its analogues)-dissolved oxygen (O2) system is an ideal alternative to ECL of the traditional luminol-hydrogen peroxide (H2O2) system, which can efficiently avoid the self-decomposition of H2O2 at room temperature. However, the mechanism for the generation of cathodic ECL by the luminol (or its analogues)-O2 system is still ambiguous. Herein, we report the study of cathodic ECL generation by the L012-O2 system at a glassy carbon electrode (GCE). The types of reactive oxygen species (ROS) involved generated during ECL reactions were verified. A possible reaction mechanism for the system was proposed and the rate constants of related reactions were estimated. Furthermore, several intermediates of L012 involved in the proposed pathways were validated by electrochemistry-coupled mass spectrometry. Finally, the cathodic ECL system was successfully used for measuring the antioxidant capacity of commercial juice with Trolox as a standard.


Assuntos
Antioxidantes , Técnicas Biossensoriais , Luminol/química , Peróxido de Hidrogênio/química , Medições Luminescentes/métodos , Eletrodos , Oxigênio/química , Técnicas Eletroquímicas , Limite de Detecção
9.
Anal Chem ; 96(8): 3655-3661, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38362869

RESUMO

Chemiluminescence is a powerful analytical technique with many advantages, while aptamers are well-known as good molecular recognition units. However, many aptamer-based chemiluminescence assays employed interface sensing, which often needed several immobilization, separation, and washing steps. To minimize the risks of contamination and false-positive, we for the first time proposed a photocatalytic aptamer chemiluminescent system for a homogeneous, label-free, generic assay of small molecules. After binding to a DNA aptamer, thioflavin T has a unique photocatalytic oxidase activity to activate the system's luminol chemiluminescence. Then, the specific binding between the aptamer and target molecules will compete with the above process. Therefore, we can realize the efficient assay of different analytes including estradiol and adenosine. Such a homogeneous chemiluminescent system allowed a direct assay of small molecules with limits of detection in a nM level. Several control tests were carried out to avoid possible false-positive results, which were originated from the interactions between analytes and sensing interfaces previously. This homogeneous chemiluminescent system provides a useful strategy to reliably assay various analytes in the pharmacy or biology field.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Medições Luminescentes/métodos , Luminol/química , Adenosina
10.
J Am Chem Soc ; 146(9): 5927-5939, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38381576

RESUMO

Deep-tissue optical imaging and photodynamic therapy (PDT) remain a big challenge for the diagnosis and treatment of cancer. Chemiluminescence (CL) has emerged as a promising tool for biological imaging and in vivo therapy. The development of covalent-binding chemiluminescence agents with high stability and high chemiluminescence resonance energy transfer (CRET) efficiency is urgent. Herein, we design and synthesize an unprecedented chemiluminescent conjugated polymer PFV-Luminol, which consists of conjugated polyfluorene vinylene (PFV) main chains and isoluminol-modified side chains. Notably, isoluminol groups with chemiluminescent ability are covalently linked to main chains by amide bonds, which dramatically narrow their distance, greatly improving the CRET efficiency. In the presence of pathologically high levels of various reactive oxygen species (ROS), especially singlet oxygen (1O2), PFV-Luminol emits strong fluorescence and produces more ROS. Furthermore, we construct the PFV-L@PEG-NPs and PFV-L@PEG-FA-NPs nanoparticles by self-assembly of PFV-Luminol and amphiphilic copolymer DSPE-PEG/DSPE-PEG-FA. The chemiluminescent PFV-L@PEG-NPs nanoparticles exhibit excellent capabilities for in vivo imaging in different inflammatory animal models with great tissue penetration and resolution. In addition, PFV-L@PEG-FA-NPs nanoparticles show both sensitive in vivo chemiluminescence imaging and efficient chemiluminescence-mediated PDT for antitumors. This study paves the way for the design of chemiluminescent probes and their applications in the diagnosis and therapy of diseases.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Espécies Reativas de Oxigênio , Polímeros/química , Luminol , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanopartículas/química , Inflamação/diagnóstico por imagem , Inflamação/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química
11.
Mikrochim Acta ; 191(3): 151, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386184

RESUMO

A novel luminol derivative of N-(1,4-dioxo-1,2,3,4-tetrahydrophthalazin-5-yl)acrylamide (DTA) with excellent luminescence efficiency was designed and synthesized. Furthermore, a molecularly imprinted electrochemiluminescence sensor (MIECLS) was fabricated to detect ultratrace levels of human serum albumin (HSA) with high sensitivity and selectivity via a click reaction. The molecularly imprinted polymers (MIPs) were formed on the electrode surface via electropolymerization with HSA as a template molecule and catechol as a monomer. In the detection process, the -SH group of HSA on the electrode and the C = C bond of acryloyl group in DTA formed a new C-S bond via the Michael addition reaction to construct the MIECLS. The higher the concentration of HSA, the greater electrochemiluminescence (ECL) intensity measured. Taking advantage of MIECLS for ECL detection (scanning potential, - 0.4 to 0.5 V), there was a good linear relationship between ECL intensity and the logarithm of HSA concentration in the range 5 × 10-9 to 1 × 10-13 mg mL-1. The limit of detection (LOD) of the sensor was 1.05 × 10-15 mg mL-1. The sensor exhibited outstanding selectivity and stability. The sensor was applied to detect HSA in human serum with good recoveries of 97.7-105.2%. The concentration of HSA was detected by electrochemical method using the gating effect of MIP.


Assuntos
Acrilamida , Luminol , Humanos , Técnicas Eletroquímicas , Eletrodos , Albumina Sérica Humana
12.
ACS Sens ; 9(2): 1023-1030, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38353664

RESUMO

The development of highly sensitive and selective analytical approaches for monitoring enzymatic activity is critical for disease diagnosis and biomedical research. Herein, we develop an exogenous co-reactant-free electrochemiluminescence (ECL) biosensor for the ratiometric measurement of α-glucosidase (α-Glu) based on a zeolitic imidazolate framework (ZIF-67)-regulated pyrene-based hydrogen-bonded organic framework (HOF-101). Target α-Glu can hydrolyze maltose to α-d-glucose, which can subsequently react with GOx to produce gluconic acid. The resultant gluconic acid can dissolve ZIF-67, leading to the recovery of the HOF-101 cathodic ECL signal and the decrease of the luminol anodic ECL signal. The long-range ordered structure of HOF-101 can speed up charge transfer, resulting in a stable and strong cathodic ECL signal. Moreover, ZIF-67 can not only efficiently quench the ECL signal of HOF-101 due to ECL resonance energy transfer between HOF-101 and ZIF-67 as well as the steric hindrance effect of ZIF-67 but also enhance the anodic ECL emission of luminol in dissolved O2 system because of its ordered and porous crystalline structure and the atomically dispersed Co2+. Notably, HOF-101 possesses a higher ECL efficiency (32.22%) compared with the Ru(bpy)32+ standard. Importantly, this ratiometric ECL biosensor shows high sensitivity (a detection limit of 0.19 U L-1) and a broad linear range (0.2-50 U L-1). This biosensor can efficiently eliminate systematic errors and enhance detection reliability without the involvement of exogenous co-reactants, and it displays good assay performance in human serum samples, holding great promise in biomedical research studies.


Assuntos
Técnicas Biossensoriais , Gluconatos , alfa-Glucosidases , Humanos , Medições Luminescentes/métodos , Reprodutibilidade dos Testes , Luminol , Técnicas Biossensoriais/métodos
13.
Lab Chip ; 24(4): 810-818, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38224458

RESUMO

This paper reports a spin-disc paper-based device with 10 individual detection units containing electromagnetic modules controlling the sample incubation time before chemiluminescence (CL) signal detection. After the sample was added to the top paper chip and incubated with the enzyme, the electromagnet was turned off to allow contact between the top and bottom paper. The H2O2 generated by the sample flowed vertically to the bottom paper and initiated the oxidase of the luminol to generate the CL signal. After one detection the disc was automatically rotated to the next position to repeat the above detection. The advantage of using the device over the lateral flow and the in situ detection was firstly proved using the detection of H2O2 and the glucose/lactate sample with 5 minute incubation. The CL intensity was increased 300 times/1000 times as the glucose/lactate was incubated for 5 minutes compared to the non-incubated samples. Afterward, the device was employed to separately detect glucose and lactate diluted in PBS, artificial sweat, artificial saliva, and fresh cell culture media. Finally, the device was employed to detect the glucose and lactate in the media collected over the 24 hour culture of PC3 cells. The uptake and production rates of glucose and lactate were correspondingly determined as 0.328 ± 0.015 pmol h-1 per cell and 1.254 ± 0.053 pmol h-1 per cell, respectively. The reported device has wide application potential due to its capabilities in automatic detection of multiple samples with very high sensitivity and small sample volume (down to 0.5 µL).


Assuntos
Glucose , Ácido Láctico , Luminescência , Peróxido de Hidrogênio , Luminol , Medições Luminescentes
14.
Biosens Bioelectron ; 250: 116078, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295578

RESUMO

Delamination of the exfoliated multilayer MXenes with electro-catalysts, not only leads to increasing surface area for high electrochemiluminescent (ECL) signal tracer loading but also provides highly sensitive achievements in a coreaction accelerator manner. To this end, herein, we used bromophenol blue (BPB)-delaminated multilayer Ti3C2 MXene as both a coreaction accelerator to promote the electrochemiluminescent (ECL) reaction rate of luminol (LUM) and the co-reactant H2O2 and a substrate for retaining high loading of glucose oxidase (GOx)-conjugated polyethylene imine (PEI) along with luminophore species into more open structure of Ti3C2 MXene for sensitive detection of glucose. In the presence of glucose, in situ generating H2O2 product through a GOx-catalyzed process could produce abundant •OH radicals via the peroxidase-like activity of the BPB@Ti3C2 in the LUM ECL reaction. Moreover, decreasing the distance between the high-content LUM into the BPB@Ti3C2 and the generated •OH, minimizes the decomposition of highly active •OH, providing a superb ECL signal. Last, the proximity of incorporated GOx into the delaminated Ti3C2 MXene near the electrode allows efficient electron transfer between the electrode and enzyme. The integration of such amplifying effects endowed high sensitivity and excellent selectivity for glucose with a low limit of detection of 0.02 µM in the wide range of 0.01 µM-40,000 µM, enabling the feasibility of the glucose analysis in human serum samples. Overall, the enhanced ECL based on the BPB@Ti3C2 opens a new horizon to develop highly sensitive MXene-based ECL toward the field of biosensors.


Assuntos
Técnicas Biossensoriais , Nitritos , Elementos de Transição , Humanos , Titânio/química , Peróxido de Hidrogênio/química , Fotometria , Glucose Oxidase/química , Luminol/química , Medições Luminescentes , Técnicas Eletroquímicas
15.
Mikrochim Acta ; 191(2): 111, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252316

RESUMO

A simple and ultrasensitive sandwich-type electrochemiluminescence (ECL) immunosensor has been developed using porous three-dimensional gold nanoparticles (Au NPs) iron(Fe)-zinc(Zn) metal-organic frameworks (Au NPs-FeZn-MOFs@luminol) as high-efficiency ECL signal probes with Fe single-atom catalysts (SACs) (Fe-N-C SACs) as potentially advanced coreaction accelerators and dissolved oxygen as a coreaction agent to realize an H2O2-free amplification method for detecting carcinoembryonic antigen (CEA). The cathodic ECL of luminol, which was usually negligible, increased first. Because the Fe-N-C SACs exhibited an outstanding catalytic performance and a unique electronic structure, different reactive oxygen species (ROS) were generated via the oxygen reduction reaction. ROS oxidized the luminol anions to luminol anion radicals, preventing the time-consuming luminol electrochemical oxidation. Furthermore, the luminol anion radicals generated in situ reacted with ROS to produce potent cathodic ECL emissions. The immunosensor exhibited favorable analytical accuracy (detection range: 0.1 pg mL-1 - 80 ng mL-1), and its detection limit for serum samples was 0.031 pg mL-1 (S/N = 3). Consequently, the proposed strategy offers a new approach for early screening of CEA.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Antígeno Carcinoembrionário , Ouro , Imunoensaio , Luminol , Espécies Reativas de Oxigênio , Ferro , Ânions
16.
Talanta ; 271: 125660, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219326

RESUMO

The excessive content of lead (Pb(II)) and Staphylococcus aureus (S.aureus) seriously harms the quality of aquatic products. In this paper, a highly sensitive electrochemiluminescence (ECL) biosensor was constructed using the synergistic effect of Au NPs@Nickel-Cobalt-Metal-organic frameworks (Au@Ni-Co-MOFs) and double potential resolution function of urchin-like Au@luminol and Cadmium sulfide quantum dots (CdS QDs) for synchronous detection of Pb(II) and S.aureus in aquatic products. Au@Ni-Co-MOFs as the base material, its cube structure can improve the surface active area and sensitivity of the sensor, providing more catalytic active sites for the two functional probes. Urchin-like Au@luminol binding aptamer DNA2 specifically recognizes Pb(II), CdS QDs binding aptamer DNA3 specifically recognizes S.aureus, which collaboratively catalyzed hydrogen peroxide reduction to produce two electrochemiluminescence signals. The shared hairpin structure DNA1 binds stably to Au@Ni-Co-MOFs via the Au-S bond, and the two functional probes are complementary paired with the DNA1 respectively to ensure the specificity of the aptamer. According to the ECL intensity changes of different potentials signal sources, the synchronous detection of Pb(II) and S.aureus with different concentrations is realized. The sensor realizes the detection of two targets in aquatic products and provides a new strategy for the simultaneous detection of multiple targets.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Nanopartículas Metálicas , Estruturas Metalorgânicas , Pontos Quânticos , Sulfetos , Estruturas Metalorgânicas/química , Luminol/química , Chumbo , Staphylococcus aureus , Limite de Detecção , Nanopartículas Metálicas/química , Ouro/química , Medições Luminescentes , Pontos Quânticos/química , Oligonucleotídeos , Técnicas Eletroquímicas
17.
Talanta ; 269: 125471, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061203

RESUMO

Gold nanoparticles (AuNPs)@N-(4-aminobutyl)-N-ethylisoluminol (ABEI)@Titanium dioxide nanorods (TiO2NRs) were used as sensing materials to produce a unique encapsulated nanostructure aptasensor for the detection of acetamiprid residues in this work. ABEI, an analog of luminol, was extensively used as an electrochemiluminescence (ECL) reagent. The ECL mechanism of ABEI- hydrogen peroxide (H2O2) system had connections to a number of oxygen-centered free radicals. TiO2NRs improved ECL response with high electron transfer and a specific surface area. AuNPs were easy to biolabel and could catalyze H2O2 to enhance ECL signal. AuNPs were wrapped around TiO2NRs by utilizing the reduction property of ABEI to form wrapped modified nanomaterials. The sulfhydryl-modified aptamer bound to the nanomaterial by forming gold-sulfur (Au-S) bonds. The aptamer selectively bound to its target with the addition of acetamiprid, which caused a considerable decrease in ECL intensity and enabled quantitative detection of acetamiprid. The aptasensor showed good stability, repeatability and specificity with a broad detection range (1×10-2-1×103 nM) and a lower limit of detection (3 pM) for acetamiprid residues in vegetables. Overall, this aptasensor presents a simple and highly sensitive method for ECL detecting acetamiprid, with potential applications in vegetable safety monitoring.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos , Ouro/química , Verduras , Nanopartículas Metálicas/química , Limite de Detecção , Peróxido de Hidrogênio/química , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Luminol/química , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos
18.
Talanta ; 269: 125446, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043343

RESUMO

The fabrication of multicolor chemiluminescence (CL) sensing chip for the discrimination and detection of multianalytes remains a great challenge. Herein, machine learning assisted multicolor microfluidic CL detection chip for the identification and concentration prediction of antibiotics was presented. Firstly, a three-channel microfluidic CL detection chip was fabricated. The three detection zones of the microfluidic detection chip were modified with CL catalyst Co(II) and different CL reagents including luminol, luminol mixed with fluorescein, and luminol mixed with phloxine B, respectively. Strong blue, green and pink-purple colored light emissions can be generated from the three detection zones in the presence of H2O2 solution. The three multicolor CL emissions show different degrees of reduce in intensity and change in color in the presence of different antibiotics, including diethylstilbestro (DES), metronidazole (MNZ), kanamycin (KAN), isoniazide (INH), and ceftiofur sodium (CS), resulting in distinct fingerprint-like response patterns. The red (R), green (G), blue (B) and gray scale values of the three multicolor light emissions were extracted and ten characteristic sensing parameters were chosen to obtain multicolor CL response database. Then, machine learning assisted data analysis were carried out. The five antibiotics can be facilely classified by using principal component analysis (PCA) and hierarchical clustering analysis (HCA), and further quantified by using deep neural networks (DNN) algorithm. Good results were obtained for identification of binary antibiotic mixtures, spiked antibiotics in water samples, and unknown antibiotic samples. Satisfied results were obtained for concentration prediction of antibiotics. This work provides a simple machine learning assisted and multicolor microfluidic CL detection chip based CL sensing strategy for discrimination and quantitative detection of multiple analytes.


Assuntos
Antibacterianos , Microfluídica , Microfluídica/métodos , Luminol , Luminescência , Peróxido de Hidrogênio , Medições Luminescentes/métodos
19.
Biosens Bioelectron ; 246: 115863, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38008056

RESUMO

Metal organic gels (MOGs) are a new kind of intelligent soft materials with excellent luminescence properties. However, MOGs with dual electrochemiluminescence (ECL) properties have not been reported. In this study, using Eu3+ as metal node, 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine (Hcptpy) and Luminol as organic ligands, a novel dual-ligand Europium-organic gels (Eu-L-H MOGs) were prepared by simple mixing at room temperature. On the one hand, Eu-L-H MOGs could exhibit strong and stable anodic ECL signals in the phosphate buffered saline (PBS) without the addition of co-reactants, which came from the blue emission of Luminol. On the other hand, using K2S2O8 as a cathodic co-reactant, Eu-L-H MOGs produced cathodic signals, which were derived from the red emission of Eu sensitized by Hcptpy through the antenna effect. Based on the independent dual ECL signals of Eu-L-H MOGs, we selected Alexa Flour 430 as the receptor and anodic ECL emission of Eu-L-H MOGs as the donor to construct the ECL resonance energy transfer (ECL-RET) ratio biosensor, which utilized exonuclease III assisted DNA cycle amplification to achieve ultrasensitive detection of the I27L gene. The detection linearity of I27L ranged from 1 fM to 10 nM, with a detection limit as low as 284 aM. This study developed a straightforward technique for obtaining a single luminescent material with dual signals, and further broadened the analytical application of MOGs in the realm of ECL.


Assuntos
Técnicas Biossensoriais , Európio , Luminol , Ligantes , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Géis , Técnicas Eletroquímicas/métodos , Limite de Detecção
20.
Biosens Bioelectron ; 247: 115914, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091899

RESUMO

The conventional luminol-based electrochemiluminescence (ECL) biosensor suffers from hampered signal stability due to the self-decomposition of the H2O2 co-reactant. Here, we propose an N-doped TiO2/Ti3C2 heterojunction driven self-photocatalytic platform for ECL signal amplification and then combine it with molecular imprinting technology for sensitive and steady detection of dexamethasone (DXM). Unlike traditional cases involving specific catalysts or external electron injection, the initial luminescence of luminol in this new system is utilized as the excitation light of N-doped TiO2/Ti3C2 photocatalyst to promote the conversation of dissolved oxygen to H2O2, supplying more co-reactants to improve ECL of luminol in turn. Thanks to the heterojunction and self-photocatalytic cyclic amplification, this molecularly imprinted ECL sensor exhibits a wide linear range (1.0 × 10-6-1.0 × 101 µg mL-1) and a low detection limit, as well as excellent anti-interference capability, sensitivity, and stability. This work contributes to more reliable and steady detection of DXM and brings new insights into developing exogenous co-reactant-free self-enhancement ECL models for biosensor applications.


Assuntos
Técnicas Biossensoriais , Luminol , Peróxido de Hidrogênio , Titânio , Medições Luminescentes , Dexametasona , Limite de Detecção , Técnicas Eletroquímicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...